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Abstract 

Infection results when a pathogen produces host tissue damage and elicits an immune response. Critically ill patients 
experience immune activation secondary to both sterile and infectious insults, with overlapping clinical phenotypes 
and underlying immunological mechanisms. Patients also undergo a shift in microbiota with the emergence of 
pathogen-dominant microbiomes. Whilst the combination of inflammation and microbial shift has long challenged 
intensivists in the identification of true infection, the advent of highly sensitive molecular diagnostics has further 
confounded the diagnostic dilemma as the number of microbial detections increases. Given the key role of the host 
immune response in the development and definition of infection, profiling the host response offers the potential to 
help unravel the conundrum of distinguishing colonisation and sterile inflammation from true infection. This narra-
tive review provides an overview of current approaches to distinguishing colonisation from infection using routinely 
available techniques and proposes matrices to support decision-making in this setting. In searching for new tools to 
better discriminate these states, the review turns to the understanding of the underlying pathobiology of the host 
response to infection. It then reviews the techniques available to assess this response in a clinically applicable context. 
It will cover techniques including profiling of transcriptome, protein expression, and immune functional assays, detail-
ing the current state of knowledge in diagnostics along with the challenges and opportunities. The ultimate infection 
diagnostic tool will likely combine an assessment of both host immune response and sensitive pathogen detection to 
improve patient management and facilitate antimicrobial stewardship.
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Introduction

Infection develops when a microorganism enters a space 
intolerant of that microorganism, overgrows, or releases 
toxins that damage the host and provoke an inflamma-
tory response, that if severe enough results in organ fail-
ure (sepsis). The macroscopic, cellular, and biochemical 

features of infection overlap with inflammation from 
sterile tissue damage. The majority of critically ill patients 
manifest features of systemic inflammation irrespective 
of their admitting problem [1]. Critically ill patients rap-
idly develop dysbiosis, with emergence of pathogen-dom-
inant microbiomes in mucosal organs even in the absence 
of frank infection. Thus, distinguishing colonisation from 
infection in the critically ill is challenging.

The advent of highly sensitive molecular pathogen 
detection shows promise in improving antimicrobial pre-
scribing [2, 3]; however, these techniques may exacerbate 
the problem of unnecessarily treating colonisation, as 
organisms can be identified in almost all mucosal organ 

*Correspondence:  ac926@cam.ac.uk 
2 Division of Anaesthesia, Department of Medicine, Level 4, 
Addenbrooke’s Hospital, University of Cambridge, Hills Road, 
Cambridge CB2 0QQ, UK
Full author information is available at the end of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-023-07108-6&domain=pdf
http://orcid.org/0000-0002-3211-3216


samples [4–6]. Although the use of antimicrobials in 
infection is lifesaving [7], inappropriate administration is 
associated with significant harm [8]. Thus, the differen-
tiation of colonisation in the presence of sterile inflam-
mation from infection is crucial to maximising benefits 
and minimising harm.

Existing approaches to distinguishing colonisation 
from infection include assessing clinical features of infec-
tion [9], determination of pathogen density [10], and use 
of plasma biomarkers [11]. These measures are imperfect 
and lack discriminant ability between infection and ster-
ile inflammation.

Identification of the specific host responses to infection 
offers the prospect of resolving the problems of mistak-
ing colonisation for infection, or sterile inflammation 
for culture-negative infection, thus reducing the risks of 
unnecessary antimicrobials [8, 12]. This review summa-
rises current clinical approaches to this issue, which gives 
an overview of the current understanding of host–patho-
gen responses, and important sources of heterogeneity. It 
then describes the various techniques available to profile 
host responses and how these may become clinically use-
able tools in the future.

Current approaches to distinguishing colonisation 
and sterile inflammation from infection
The original conceptualisation of infection, as invasion 
of previously sterile spaces by pathogens, has evolved 
with the discovery of natural microbiomes in mucosal 
organs. Dysbiotic pathogen-dominant ‘pathobiomes’ can 
emerge [13], with phenotypic shifts towards virulence 
amongst microorganisms under metabolic stress [14]. 
Dysbiosis may occur in a number of disease contexts and 
does not automatically lead to infection [15], although 
it does increase the risk [16]. The phenomena of patho-
gen colonisation in critical illness [17] can, therefore, 
be reconceptualised as the development of dysbiosis, 
with colonisation and infection existing on a continuum 
instead of binary states [18].

Colonisation is most easily distinguished from infec-
tion when systemic inflammation is absent; however, 
given the high prevalence of inflammation in critical ill-
ness [1], this situation is rarely clinically encountered. 
Although scores, such as the clinical pulmonary infection 
score (CPIS), can reduce subjectivity, such scores have 
modest diagnostic performance [9].

Plasma biomarkers, such as C-reactive protein (CRP) 
and procalcitonin (PCT), are commonly used; however, 
their ability to distinguish infection from sterile inflam-
mation is imperfect. Both markers have better evidence 
for early discontinuation of antibiotics than initiation and 
have recently been reviewed elsewhere [11]. A systematic 

review of other individual soluble markers has also 
recently been published [19].

The microbes identified can help to distinguish colo-
nisation from infection. Some organisms are considered 
‘non-pathogenic’ from sites where colonisation is com-
mon; for instance, Candida species detected in the lungs, 
gut, or bladder or Enterococci in the lungs. This is harder 
to interpret when the patient is immunosuppressed or 
when skin commensals are found from sterile site cul-
tures (e.g., blood or cerebrospinal fluid).

The true epidemiology of false-positive and -negative 
culture rates in intensive care unit (ICU) is hard to elu-
cidate, as these are heavily influenced by testing prac-
tices and case definitions. Blood cultures are positive 
in approximately 10% of cases. Reported false-positive 
rates vary from 0.3% to 5.5%, leading to poor diagnostic 
performance in low prevalence populations [20, 21]. To 
give context to the impact of metagenomic next-genera-
tion sequencing (mNGS), blood, sputum, and urine cul-
tures in suspected infections were positive in 7.9%, 39%, 
and 32% of cases, and increased to 41%, 96%, and 100%, 
respectively, utilising mNGS [4–6].

Quantitation of pathogenic species is commonly used 
for discrimination, assuming that heavy growth indicates 
infection. For instance, in the lungs, common cut-offs 
are  104 colony-forming units (CFU)/ml for lavage and 
 105–106  CFU/ml for endotracheal aspirate or sputum 
[22]. These cut-offs have suboptimal sensitivity compared 
to histological gold standards [22], and do not take into 
account dilution or growth suppression from intercur-
rent antimicrobials.

Although all currently available measures are imper-
fect, we propose the matrix in Table 1 as optimal current 
practice in distinguishing colonisation from infection 
incorporating a risk-based approach to antimicrobial 
prescribing as advocated in the Surviving Sepsis Cam-
paign guidelines [23]. A pervading difficulty is the lack of 
a gold standard for differentiating infection from coloni-
sation with concomitant sterile inflammation. Therefore, 
the central column of Table 1 encompasses the majority 

Take home message 

Infection can be difficult to distinguish from colonisation and sterile 
inflammation, with only the former requiring antimicrobial therapy.  
The rise of highly sensitive microbial diagnostics is likely to exac-
erbate this problem.  The key role of the host immune response 
in defining infection makes it an attractive target to discriminate 
infection from colonisation, and thereby maximise benefits and 
minimise harms from antimicrobials.  This article describes cur-
rent approaches to distinguishing colonisation from infection, the 
underlying immunopathology of infection and summarises the cur-
rent and future diagnostic tools.



of patients, with consequent effects on antimicrobial 
prescribing.

Host–pathogen interactions
Given the centrality of the host response in defining 
infection, assessing this response offers the potential 
to overcome the limitations of the approaches detailed 
above. To enable this assessment, it is important to 
understand how the host responds to infectious and non-
infectious insults, and sources of heterogeneity in those 
responses (Fig. 1).

Pathogenic microorganisms cause organ injury via 
direct and indirect activation of the host immune sys-
tem. Pathogen-associated molecular patterns (PAMPs) 
are highly conserved microbial motifs that are recognised 
by pattern recognition receptors (PRRs) on host cells 
resulting in immune system activation [24]. The ensuing 
inflammatory response causes tissue injury and release 
of damage-associated molecular patterns (DAMPs). 
DAMPs are host molecules, such as histones, high 

mobility group box protein 1 (HMGB1), and adenosine 
[25] that when released into the extracellular environ-
ment, act as potent immune system activators and per-
petuate the initial inflammatory response [26].

PAMPs and DAMPs both act via PRRs, using similar 
signal transduction machinery, resulting in an immune 
response and inflammatory cascade [25]. Tissue injury 
that results from non-infectious insults (e.g., pancreati-
tis and trauma) also results in the release of DAMPs [27]. 
The common pathways result in sterile insults mimicking 
the immune response to infection, making the distinction 
of these conditions challenging.

Pathogen‑specific responses
Pathogen-specific differences in the host response have 
been identified, though thus far limited to domain and 
kingdom taxonomic ranks [28, 29]. The transcriptional 
responses of patients to pathogens show both common 
and specific elements, and can distinguish bacterial from 
fungal [30] and viral [31] infections. There are differences 

Table 1 Proposed matrices for distinguishing infection from colonisation with sterile inflammation

(PCT >2ng/ml*)
OR
Frank clinical/
radiological evidence of 
infection
(e.g. pus, radiological 
abscess)

marker
(PCT 0.5-1.9ng/ml*)
OR

marker
(CRP/WCC/Fever)
OR
Clinical/radiological 
suspicion of infection
(e.g. pulmonary 

collections)

Low clinical suspicion 
and no markers elevated

Obligate pathogen 
at high growth

Obligate pathogen at 
sub-threshold growth
OR
Non-pathogenic 
organism

Negative microbiology

Infection

Targeted antimicrobials

Infection

Targeted antimicrobials

Colonisation
No antimicrobial indicated 
(unless eradication 
considered)

Infection
Organism uncertain
Broad antimicrobials

Possible infection
High risk** - broad 
antimicrobials
Low risk - watch and wait

Colonisation
No antimicrobial indicated

Infection
Organism uncertain
Broad antimicrobials

Possible infection
High risk** - broad 
antimicrobials
Low risk - watch and wait

No evidence
of infection or colonisation

Host response

Microbiology

PCT: procalcitonin; CRP: C-reactive protein; WCC: white cell count

Approach to differentiating infection from colonisation in ICU with current diagnostics. Simultaneous assessment of microbiology and the host response, adjudicated 
in ambiguous cases by a clinical risk assessment. Patients are anticipated to move between categories as illness and investigation progress, and should be applied as 
part of a daily review

*PCT may also be elevated in the setting of recent major surgery, trauma, severe burns, and cardiogenic shock

**High risk indicated by the presence of shock, worsening organ failure (e.g., increase in SOFA score ≥ 2), or immunosuppression



between the host responses to broad categories of bac-
teria, such as Gram-positive and negative organisms 
across microcirculatory alterations [32], cytokine [33], 
and gene-expression profiles [34]. Heterogeneity in host 
responses to a particular pathogen may arise from co-
infection, differences in the microbiome, genetic back-
ground, immunocompetence, and/or the infected organ 
or body compartment (Fig. 1).

Microbiome
The development of dysbiosis frequently precedes clini-
cally apparent infection. As well as permitting the growth 
of pathogens, alterations in the microbiome may prime 
the immune system for a more exuberant response and 
thus increase the risk of host tissue damage and sepsis 
[13, 35]. Critical illness also disrupts mucosal barriers 
and endothelial function, increasing the risk of pathogen 
translocation [18]. How dysbiosis should be managed 
remains uncertain. Therapeutic strategies in susceptible 
populations aimed at reducing the burden of pathogenic 
microorganisms, such as selective digestive decontami-
nation, have demonstrated promise in reducing mor-
bidity and mortality [36] Other approaches to altering 

the host microbiome, including probiotics in high-risk 
patients, have had mixed results [37].

Host genome
Differences in the host genome have been associated with 
differences in susceptibility to infection [38] and infec-
tion-associated end-organ dysfunction. Notably, death 
from infection is more highly heritable than death from 
heart disease or malignancy [39], although the absolute 
size of the impact of genetic factors on infection mortal-
ity remains debated [40].

A recent systematic review identified genetic variants 
associated with a risk of sepsis, including eight variants 
of PRRs [41]. Similarly, genetic polymorphisms in certain 
cytokines, such as tumour necrosis factor-alpha (TNF-a) 
[42] and coagulation factors, may also account for differ-
ent individual susceptibilities to infection and subsequent 
sepsis [43].

Host immunocompetence
Differences in host immunocompetence alter the sus-
ceptibility to and clinical trajectory of infections, and 
risks confounding host-response profiling for diagnostic 
purposes. Immunocompromised patients are at risk of 

Fig. 1 Diagrammatic summary of the factors influencing the host response to pathogens and the development of systemic inflammation, all of 
which may lead to heterogenous responses between hosts even to a single pathogen. Figure created with BioRender.com



a broader range of pathogens, with even low virulence 
organisms causing life-threatening organ  dysfunction31. 
Furthermore, the clinical features of infection may be 
less pronounced, owing to their reduced ability to mount 
an immune response [44]. The role of host immuno-
competence is a complex one and, interestingly, despite 
an increased susceptibility to infection, patients immu-
nosuppressed following solid-organ transplant have a 
mortality rate no greater, and in some cases less, than 
immunocompetent patients even after adjusting for 
potential confounding factors [44–46].

Immunosuppression is also a complication of sepsis in 
the previously immunocompetent host. Patients conva-
lescing from a septic insult are at increased risk of recur-
rent infection [47]. The mechanisms of sepsis-induced 
immunosuppression are multiple and include inflam-
mation-induced cellular anergy and apoptosis as well as 
therapy-induced immunosuppression (e.g., glucocorti-
coid therapy) [48, 49].

Compartmentalisation of infections and host responses
Heterogeneity may also be introduced by infection origi-
nating in different organs or compartments. In-hospital 
mortality differs depending on the origin of infection 
(e.g., pulmonary, peritoneal, urinary, leptomeningeal, 
and primary bacteraemia) [50, 51]. The transcriptomic 
and immune response may also differ depending on what 

tissue-specific immune cells (e.g., alveolar macrophages) 
are involved [52].

These factors combine to produce marked heterogene-
ity in responses to pathogens. The idea that sepsis repre-
sents a common, stereotyped host response to infection 
is giving way to a growing recognition of distinct pheno-
types or subclasses [53]. Such subclasses may be char-
acterised using clinical or -omic (i.e., transcriptomic, 
metabolomic, or proteomic) data. Sepsis subclasses, how-
ever, have been difficult to consistently identify. Beyond 
the heterogeneity outlined above, a further reason for 
this is timing. Time-series analyses reveal dynamic and 
rapid transcriptional shifts in immune cells in response 
to infection over time [54].

Overall, the above host–pathogen interactions are not 
uniform, but rather show markedly variable pathophysi-
ological features [50, 55]. This heterogeneity complicates 
attempts to identify a host response that can differen-
tiate between infection and colonisation with sterile 
inflammation.

Techniques to characterise the host response 
and distinguish infection from sterile injury
Progress in biological and computational sciences has 
created tools to characterise specific host immunological 
responses to the presence of microorganisms. Categoris-
ing these tools under transcriptomics, proteomics, and 

Fig. 2 Diagrammatic summary of how immune cells respond to the stimulus of encountering a pathogen and how these responses can be 
assessed by laboratory or point-of-care testing. The upper section illustrates some of the immunobiological responses which occur within the 
patient, including both de-novo protein synthesis following transcription of messenger RNA (mRNA) and activation of existing proteins. Proteins, 
such as chemokines and cytokines, may be secreted into the extracellular environment and are thus detectable in body fluids. Proteins frequently 
undergo post-translational modifications, such as the addition or removal of phosphate groups, influencing their function and location within the 
cell. Protein translation and post-translational modification, combined with the release of soluble signalling molecules, combine to effect immune 
cell function. Terms in bold are responses which can be assayed, and terms in italics are processes occurring. The lower section illustrates how these 
various immunobiological responses can be detected and assayed using the tools described in the article. Figure created with BioRender.com



functional immune assays, we review how these phe-
notyping tools have been used to differentiate infection 
from non-infectious host responses (Fig. 2). Table 2 illus-
trates how a hypothetical host-response marker could 
improve the safety of empiric antimicrobial therapy by 
reducing the risks of false-negative testing whilst limiting 
overuse of antimicrobials and should be contrasted with 
Table 1 showing optimal current practice.

Transcriptional responses and classifiers
Transcriptomic diagnostics with better performance than 
PCT for differentiating infection from sterile inflamma-
tion are already in development and are likely to be the 
first of the novel host-response diagnostics discussed 
here to enter clinical practice [56, 57]. The perceived 
complexity of sequencing and machine-learning make 
for excellent marketing, but hide significant challenges. 
It is therefore important for clinicians to understand the 
strengths and weaknesses of these diagnostics.

Transcriptomics refers to sequencing messenger ribo-
nucleic acid (mRNA) that bridges the gap between static 
deoxyribonucleic acid and protein expression, thus iden-
tifying patterns of cellular signalling. These patterns 
develop rapidly, and precede clinically overt infection 
by days [58, 59]. Sequencing the entire transcriptome is 
useful to identify diagnostic signatures. However, meas-
uring the expression of a small number of genes with 
diagnostic value is required to make a clinically useable 

test. Once developed, turnaround times can be as short 
as 1 hour [56].

There are trade-offs that clinicians should be aware 
of. First, prediction models often compromise inter-
pretability (or transparency) for accuracy [60]. To illus-
trate, we consider several mRNA-based tests, namely 
FAIM3:PLAC8 ratio [61],  SeptiCyte™ [62], Sepsis Metas-
core [63], and IMX-BVN-2 neural network classifier [57], 
which are summarised in Table 3.

At the simplest level, a ratio of two genes with strongly 
divergent expression (FAIM3:PLAC8) can be used to 
discriminate community-acquired pneumonia (CAP) 
from non-infectious inflammation with better perfor-
mance than several plasma biomarkers including PCT 
[61]. Whilst this ratio was validated in sepsis arising 
from sources other than CAP [52], its high sensitivity is 
traded against low specificity which would limit impact 
on antimicrobial prescribing.  SeptiCyte™ is slightly 
more complex, combining two ratios with an improve-
ment in specificity and no loss of sensitivity compared to 
FAIM3:PLAC8 [62]. This is being commercialized as Sep-
tiCyte LAB (6  h test time) and an abbreviated PLAC8/
PLA2G7 ratio as SeptiCyte RAPID (1 h test time) [56].

More complex tests utilise larger numbers of genes, 
although even these represent a tiny minority of those 
altered in infection. Sepsis Metascore is an 11-gene sig-
nature, validated across multiple datasets to differentiate 
sepsis from non-infectious inflammation (SIRS, trauma, 

Table 2 Potential influence of a novel host-response marker

novel host marker(s) of 
infection positive

Novel host marker 
negative but clinical/
radiological suspicion of 
infection

Low clinical suspicion 
and no markers elevated

Obligate pathogen 
at high growth

Obligate pathogen at 
sub-threshold growth
OR
Non-pathogenic 
organism

Negative microbiology

Infection

Targeted antimicrobials

Possible infection
High risk* - targeted 
antimicrobials
Low risk - watch and wait

Colonisation
No antimicrobial indicated 
(unless eradication 
considered)

Infection
Organism uncertain
Broad antimicrobials

Colonisation
Watch and wait

Colonisation
No antimicrobial indicated

Infection
Organism uncertain
Broad antimicrobials

Unlikely infection or 
colonisation
Watch and wait
High threshold 
antimicrobials

No evidence
of infection or colonisation

Host
response

Microbiology

Rapid advancements in molecular microbiological tests will significantly increase the rate of positive but clinically ambiguous microbe detection. To avoid an increase 
in inappropriate antimicrobial use, novel host-response markers offer promise in the interpretation of these detections

*High risk indicated by the presence of shock, worsening organ failure (e.g., increase in SOFA score ≥ 2), or immunosuppression



and critical illness) [63]. This ‘infection z-score’ is the dif-
ference in geometric means between positive and nega-
tive gene expression, which is less intuitive. However, its 
multiple validation sets [52, 63] and ability to be used at 
multiple timepoints rather than only at ICU admission 
are appealing. The most complex of the tests reviewed is 
IMX-BVN-2, a neural network classifier that utilises 29 
genes to identify bacterial and viral infections in patients 
presenting to the emergency department. Diagnostic 
performance is good and superiority to PCT is suggested, 
though this should be interpreted with caution as PCT 
was available to adjudicating clinicians in the training 
data. The output is a score between 0 and 1 calculated by 
the neural network with little transparency. To improve 
interpretability, cut-offs corresponding to likelihoods of 
infection are defined [57].

It is important to understand how these gene sets were 
derived, with the two broad approaches being data- or 
biology-driven discovery. Data-driven takes a statisti-
cal approach, identifying genes best able to discriminate 
infected patients. Whilst the genes identified may seem 
plausibly related to mechanisms, pathophysiological rel-
evance cannot be assumed. As an example of a biology-
driven approach, Reyes and colleagues identified a new 
subtype of monocyte (MS1) which is expanded in sepsis 
compared to uncomplicated infections and non-septic 
ICU patients, and inducible on LPS stimulation. Using 
MS1 marker genes to estimate their abundance from 
RNAseq data proved promising in identification of sep-
sis, but less effective at differentiating infection from ster-
ile inflammation. They also proposed a hybrid classifier 
using MS1 marker genes, PLAC8 and CLU (identified 

with a ‘data-driven’ approach) which achieved similar 
performance to FAIM3:PLAC8 ratio and  SeptiCyte™ [64]. 
Biologically-driven discovery offers the possibility of 
‘theragnostic testing’ which can be both diagnostic and 
guide disease-modifying therapy.

When assessing machine-learning derived tests, clini-
cians should be wary of looking at accuracy alone in the 
way one considers a conventional biomarker. Bias–vari-
ance trade-off needs to be considered. Bias is the dis-
tance of a model’s predictions from truth, and variance 
how much predictions would change if different train-
ing data were used [60]. These qualities form a U-shaped 
curve, meaning that increasing accuracy often reduces 
generalizability.

Integrating the host transcriptome response 
with microbiome sequencing
Integrating host-response diagnostics with microbial 
detection using mNGS is promising as it may help limit 
antimicrobials use in the face of drastically increased 
microbial detection rates [5, 6], though it is further from 
realisation than the classifiers reviewed above. mNGS, 
unlike syndromic PCR panel tests, has the potential to 
detect all microbes present in a sample. This approach 
has been applied to tracheal aspirates for the diagnosis of 
lower respiratory tract infection (LRTI) [65] and sepsis in 
critically ill adults [66].

An important innovation was the application of a rule-
based model (RBM) to the mNGS results to differenti-
ate pathogens from commensal organisms by identifying 
highly abundant organisms weighted by known patho-
genicity. This achieved an accuracy of 95.5% in tracheal 

Table 3 Transcriptomic host-response diagnostics in development

Diagnostic Population Timeframe Score Validation performance Genes

FAIM3:PLAC8 [61] ICU admission with sus-
pected CAP or sepsis

Within 48 h of ICU admis-
sion

Gene expression ratio CAP: sensitivity 97.1%,
specificity 28.6% [61]
Sepsis: AUROC 0.69–0.78 

[52]

FAIM3
PLAC8

SeptiCyte LAB & RAPID 
[62]

ICU admission with sus-
pected sepsis

Within 24–48 h of ICU 
admission

Sum of two logged 
gene-expression 
ratios

LAB: sensitivity 99%,
specificity 56%,
AUROC 0.68–0.89 [52, 62]
RAPID: AUROC 0.82–0.85 

[56]

CEACAM4
LAMP1
PLAC8
PLA2G7

Sepsis Metascore [63] ICU admission with sus-
pected sepsis; secondary 
infection in ICU; neona-
tal Sepsis

Throughout ICU admis-
sion

Infection z-score Sepsis: AUROC 0.80–0.82 
[52]

Secondary infection: 
0.68–0.84 (using time-
matched baseline) [63]

Neonatal sepsis:
AUROC 0.92 [79]

11 gene sets

IMX-BVN-2 [57] Emergency department 
attendances with sus-
pected bacterial or viral 
infection or sepsis

In the Emergency Depart-
ment

Neural network 
output with graded 
likelihood bands

Bacterial infection:
AUROC 0.89
Viral infection:
AUROC 0.83 [57]

29 gene sets



aspirates and 78% compared to blood cultures. Identify-
ing polymicrobial growths on culture and respiratory 
viruses from blood were weaknesses, but it revealed 
putative pathogens in 62% of clinically adjudicated LRTIs 
with negative microbiology and 42% of sepsis cases with 
negative cultures [65, 66].

Host-response profiling from tracheal aspirates in LRTI 
identified upregulated innate immune responses and 
downregulation of oxidative stress responses and MHC 
class II receptor signalling pathways. In viral infections, 
RSAD2 and OAS3, IFN-inducible anti-viral proteins, 
were upregulated compared to bacterial infections. Com-
bining the RBM and a 12-gene host-response classifier 
achieved 100% sensitivity and 87.5% specificity. If used as 
a clinical rule-out tool, they estimated a 38% reduction in 
antibiotic days in their no-LRTI group [65].

In sepsis, upregulation of neutrophil degranulation 
and innate immune signalling was identified. Viral sep-
sis demonstrated upregulated interferon signalling, and 
an effective virus-specific classifier was developed. Com-
bining mNGS and host-response classifiers for sepsis 
achieved a sensitivity of 99% and specificity of 78% [66]. 
Both integrated models require prospective validation 
but demonstrate the potential for sensitive and specific 
identification of infection in critically ill patients (Box 1).

Pre‑symptomatic identification of infection
Infection specific host-response signatures can be identi-
fied before clinical presentation. Tsitsiklis and colleagues 
[58] examined the host response before development of 
ventilator-associated pneumonia (VAP) complicating cor-
onavirus disease 2019 (COVID-19). They demonstrated 
changes in the host response consistent with bacterial 
infection (neutrophil degranulation, antigen presentation, 
Toll-Like Receptor (TLR), and cytokine signalling) 2 days 
before clinical recognition of secondary pneumonia.

The same pathways were suppressed immediately after 
intubation and as much as 2 weeks before the development 
of VAP compared to non-VAP patients. These findings are 
consistent with previous data which demonstrate impaired 
host responses identifying patients at risk of VAP during 
their admission, as well as identifying the development of 
VAP before clinical recognition in COVID-19 [58]. These 
findings highlight the importance of compartment-specific 
host-response signatures, and of dynamic pre-disposing 
and infection-specific changes affecting the same path-
ways, in different directions, at different time points.

A pre-symptomatic host-response signature of infec-
tion has also been identified in elective surgery patients 
3 days before clinical recognition. Gene signatures from 
blood were able to discriminate infection from non-infec-
tious systemic inflammation, and sepsis from uncompli-
cated infection [59].

Proteins and proteomics
CRP and PCT are the archetypal biomarkers of an inflamma-
tory host response but are unable to differentiate infection 
from sterile inflammation [11]. Neutrophil surface CD64 
expression is the only novel marker to have shown consist-
ently better performance than these in larger trials [19] and 
is discussed under functional assays. Alveolar cytokines have 
also shown promise in distinguishing pneumonia from non-
infectious inflammation with notable compartmentalisation 
of cytokine responses [67]. However, implementation of this 
test in clinical practice did not alter antibiotic prescribing 
[68]. This failure to impact clinical decision-making high-
lights a challenge for novel technologies with a lack of famili-
arity amongst clinicians.

A newer approach is the analysis of the whole pro-
teome. Yuxin  and colleagues [69]  made significant 
advances scaling proteomic analysis with high-through-
put tandem mass spectrometry. They examined thou-
sands of proteins in septic patients admitted to ICU 
compared to healthy volunteers, elective surgery, and 
uninfected patients. Fourteen differentially abundant 
proteins were consistently identified, though diagnostic 
performance has yet to be explored. Whole proteome 
analysis is an emerging area with greater similarity to 
transcriptomics than traditional biomarkers. Integration 
with the transcriptome and microbiome, a multi-omics 
approach [70], offers novel methods to identify host 
inflammatory responses that are specific to infection.

Signalling within cells is frequently effected through 
post-translational modification (PTM) of proteins, with 
the addition or removal of chemical groups, such as acetyl, 
phosphoryl, or methyl on amino acids. These side-chain 
alterations change protein function, solubility, trafficking, or 
location. Exposure to pathogens induces rapid and extensive 
changes in protein side chains, such as the changes in phos-
phorylation seen in neutrophils on exposure to Staphylococ-
cus aureus [71]. Whilst many of these responses to pathogens 
are common to multiple stimuli, identifying specific signal-
ling responses offers the potential for accurate identification 
of infection. The potential for detecting PTM as a diagnostic 
tool has been noted in oncology [72], although, in infection, 
this remains an underexplored area.

Relationships between multiomic datasets
Although mRNA encodes proteins, there are consistent 
discrepancies between the abundance of proteins and 
their encoding mRNA. Although technical difficulties 
during measurement should not be disregarded, Wang 
and colleagues [73] hypothesise that information flows 
between the genome, transcriptome, and proteome anal-
ogously to memory in a computer from the hard disc to 
RAM to cached memory, resulting in related but func-
tionally different records.



As an example of this complexity consider PCT. PCT 
is encoded by CALC-I gene and cleaved to form N-pro-
calcitonin, calcitonin carboxypeptide-1 (CCP-I), and cal-
citonin (CT). In sepsis, PCT production increases due to 
widespread expression of CALC-I in tissues. Measuring 
blood CALC-I gene expression may not reflect this, and 
it is notably absent from the host-response classifiers 
reviewed. PCT and N-procalcitonin remain significantly 
elevated in serum, but this does not translate to elevated 
CT levels [74]. These examples show the challenge of 
understanding complex, dynamic systems from snap-
shots of -omic data. These datasets are non-synonymous 
and have counterintuitive interactions, and intellectual 
humility regarding our understanding is vital.

Functional immune assays
Functional Immune Assays (FIAs) are a diverse group 
of tests. We discuss three with potential in identifying 
infection-specific host responses that can differentiate 
infection from sterile inflammation; neutrophil CD64 
expression, neutrophil transmigration, and pulmonary 
intravital microscopy.

The expression of CD64, an IgG receptor, on neutro-
phils is increased following stimulation with a variety of 
inflammatory mediators. Increased expression has shown 
diagnostic utility in infection vs sterile inflammation, 
with best performance at ICU admission [19] although 
more modest performance in later ICU-acquired infec-
tions. Measurement requires flow cytometry, and 
although point-of-care flow cytometers are increasingly 
available, this test is not yet commonly offered.

Cell transmigration is an important functional compo-
nent of the host immune response. Using microscopy and 
timelapse photography, cell migration can be quantified. 
Neutrophil migration patterns revealed a unique phe-
notype of spontaneous migration which was specific for 
burns patients with sepsis and rarely observed in burns 
patients without sepsis. The pattern often developed 
1–2 days before clinical recognition of sepsis. It achieved 
sensitivity of 80% and specificity of 77% for the identifica-
tion of sepsis in patients with major burns [75].

Miniaturisation of microscopes has led to the 
development of clinically useable in-vivo endoscopic 
microscopes. Akram et  al. combined these with 
administration of fluorescent probes, visualizing bac-
teria in alveoli [76]. Limitations include invasiveness 
and location specificity.

Challenges and limitations of host-response 
diagnostics
Despite their promise, host-response diagnostics face 
challenges (Box  2). Significant inter-individual varia-
tion in the host response to infection exists (Fig. 1). The 

response to infection is also demonstrably different in 
primary versus secondary infections and following dis-
tinct insults (e.g., trauma, surgery, etc.) [63]. The impact 
of co-infection also remains to be characterised. Identi-
fying the impact of these heterogenous conditions on 
diagnostic performance is crucial, and individual baseline 
comparisons may be required.

The use of machine-learning models should also be con-
sidered. The biological implications and limitations of CRP 
and PCT are well known and incorporated into clinical 
decision-making. Scores from complex models have no 
such biological basis from which to reason. Bias in machine-
learning is also well recognised. To avoid harm, developers 
and clinicians must be clear what a model is classifying, 
use diverse training data, inspect decision-making through 
interpretability and comparison to prior knowledge, and 
monitor post-deployment performance [77].

Finally, results must be translated into clinical benefit. 
This may be a significant challenge as the potential for 
rapid proliferation of transcriptomic host-response diag-
nostics without clearly defined clinical roles and, often, 
only marginal gains over current practice, may under-
mine any benefits. Conversely, they might also prove too 
inaccessible. Opaque, time-consuming and expensive 
tests are unlikely to see widespread adoption.

To realise the potential of host-response diagnostics, 
developers and clinicians must prioritise the most robust, 
interpretable, and accessible. A focus on challenging specific 
clinical problems would also be welcomed, such as the iden-
tification of secondary infections in critical illness and sterile 
inflammation, or treatment-altering conditions such as non-
bacterial sepsis. Clinicians should familiarise themselves 
with concepts introduced by -omics and machine-learning, 
and work with developers to ensure robust validation and 
effective implementation, for example by embedding them 
in adaptive clinical trials, engaging in post-deployment 
monitoring and diagnostic stewardship [78].

Box 1: Simultaneous assessment of the host 
transcriptome and microbiome may

  •  Identify causative organisms in those with negative 
cultures [65, 66].

  •  Identify organisms likely to be commensal or colo-
nising [65, 66].

  •  Identify a specific host response to infection despite 
negative microbiology [65, 66].

  •  Indicate whether the immune response is targeting 
bacteria or viruses [31].

  •  Increase the proportion of patients in which infec-
tion can be accurately excluded [65, 66].

  •  Identify evidence of infection before clinical signs 
appear [58, 59].



Box 2: Barriers to the implementation 
of transcriptomic, proteomic and functional immune 
assays in clinical practice

 1. Elucidating relevant mechanisms, disease pheno-
types, and treatment targets.
 2. Reducing the financial, time and computational 
resource cost associated with the analysis and inter-
pretation of results.
 3. Standardisation of assays to allow comparison 
between patients, labs and batches.
 4. Robust quality control, measurement error identi-
fication and reporting.
 5. Minimising the impact of cellular stress during 
sampling and processing.
 6. Defining ‘normal values’ in a dynamic, heteroge-
neous group of patients.
 7. Enabling suitable technological platforms are 
widely available to allow routine assessment of these 
parameters in clinical practice.

Conclusions
Diagnosing infection in the systemically inflamed, criti-
cally ill patient is challenging. The advent of molecular 
pathogen tests offers the prospect of greater sensitivity in 
the detection of microbes but may provide further chal-
lenges in distinguishing infection from sterile inflam-
mation and colonisation. The host response to invasive 
microorganisms is critical to defining, and thus diag-
nosing, infection, and sepsis. These responses include 
aspects which are microorganism specific and those 
that overlap with host tissue damage arising from ster-
ile insults. Host responses are modulated by numerous 
factors, including underlying genotype, immunocompe-
tence, intercurrent medications, and the patient’s endog-
enous microbial flora. Thus, the identification of specific 
host markers of infection is challenging.

The host response to infection can be interrogated via a 
range of modalities, including transcriptional, proteomic, 
and functional profiling, taking samples from the blood or 
the site of the infection. Although we are increasingly able 
to obtain unbiased profiles of all available transcripts or 
proteins present, and indeed can resolve these down to the 
single cell level, clinically useable tools will need to focus 
on the most informative markers, return reproducible and 
reliable results in a short time without the need for com-
plex and skilled analytics. Although there are several prom-
ising techniques available, most clinically applicable assays 
have not yet made it past the development stage and their 
impact on clinical decision-making remains uncertain.
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